Distinct Correlation Structure Supporting a Rate-Code for Sound Localization in the Owl’s Auditory Forebrain
نویسندگان
چکیده
While a topographic map of auditory space exists in the vertebrate midbrain, it is absent in the forebrain. Yet, both brain regions are implicated in sound localization. The heterogeneous spatial tuning of adjacent sites in the forebrain compared to the midbrain reflects different underlying circuitries, which is expected to affect the correlation structure, i.e., signal (similarity of tuning) and noise (trial-by-trial variability) correlations. Recent studies have drawn attention to the impact of response correlations on the information readout from a neural population. We thus analyzed the correlation structure in midbrain and forebrain regions of the barn owl's auditory system. Tetrodes were used to record in the midbrain and two forebrain regions, Field L and the downstream auditory arcopallium (AAr), in anesthetized owls. Nearby neurons in the midbrain showed high signal and noise correlations (R NC s), consistent with shared inputs. As previously reported, Field L was arranged in random clusters of similarly tuned neurons. Interestingly, AAr neurons displayed homogeneous monotonic azimuth tuning, while response variability of nearby neurons was significantly less correlated than the midbrain. Using a decoding approach, we demonstrate that low R NC in AAr restricts the potentially detrimental effect it can have on information, assuming a rate code proposed for mammalian sound localization. This study harnesses the power of correlation structure analysis to investigate the coding of auditory space. Our findings demonstrate distinct correlation structures in the auditory midbrain and forebrain, which would be beneficial for a rate-code framework for sound localization in the nontopographic forebrain representation of auditory space.
منابع مشابه
Optimal models of sound localization by barn owls
Sound localization by barn owls is commonly modeled as a matching procedure where localization cues derived from auditory inputs are compared to stored templates. While the matching models can explain properties of neural responses, no model explains how the owl resolves spatial ambiguity in the localization cues to produce accurate localization for sources near the center of gaze. Here, I exam...
متن کاملDifferent Profiles of Verbal and Nonverbal Auditory Impairment in Cortical and Subcortical Lesions
A B S T R A C T Introduction:We investigated differential role of cortical and subcortical regions in verbal and non-verbal sound processing in ten patients who were native speakers of Persian with unilateral cortical and/or unilateral and bilateral subcortical lesions and 40 normal speakers as control subjects. Methods: The verbal tasks included monosyllabic, disyllabic dichotic and diotic tas...
متن کاملBarn owl and sound localization
The barn owl is a nocturnal predator with excellent sound localization ability. Due to the asymmetric ears of this bird, the interaural time and level differences, respectively, provide information for the horizontal and vertical direction of a sound source. Forty years of behavioral, anatomical and physiological research on the owl’s auditory system have revealed that these two acoustic cues a...
متن کاملTuning to interaural time difference and frequency differs between the auditory arcopallium and the external nucleus of the inferior colliculus.
Barn owls process sound-localization information in two parallel pathways, the midbrain and the forebrain pathway. Exctracellular recordings of neural responses to auditory stimuli from far advanced stations of these pathways, the auditory arcopallium in the forebrain and the external nucleus of the inferior colliculus in the midbrain, demonstrated that the representations of interaural time di...
متن کاملForebrain pathway for auditory space processing in the barn owl.
The forebrain plays an important role in many aspects of sound localization behavior. Yet, the forebrain pathway that processes auditory spatial information is not known for any species. Using standard anatomic labeling techniques, we used a "top-down" approach to trace the flow of auditory spatial information from an output area of the forebrain sound localization pathway (the auditory archist...
متن کامل